Special invariant operators I
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 179-198
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The aim of the first part of a series of papers is to give a description of invariant differential operators on manifolds with an almost Hermitian symmetric structure of the type $G/B$ which are defined on bundles associated to the reducible but undecomposable representation of the parabolic subgroup $B$ of the Lie group $G$. One example of an operator of this type is the Penrose's local twistor transport. In this part general theory is presented, and conformally invariant operators are studied in more details.
Classification :
17B56, 53C10, 53C35, 58G35, 58H10, 58J70
Keywords: invariant operators; Cartan connection; almost hermitian symmetric structures
Keywords: invariant operators; Cartan connection; almost hermitian symmetric structures
@article{CMUC_1996__37_1_a12,
author = {Bure\v{s}, Jarol{\'\i}m},
title = {Special invariant operators {I}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {179--198},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {1996},
mrnumber = {1396170},
zbl = {0851.58049},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a12/}
}
Bureš, Jarolím. Special invariant operators I. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 179-198. http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a12/