Butler groups and Shelah's Singular Compactness
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 171-178.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A torsion-free group is a $B_2$-group if and only if it has an axiom-3 family $\frak C$ of decent subgroups such that each member of $\frak C$ has such a family, too. Such a family is called $SL_{\aleph_0}$-family. Further, a version of Shelah's Singular Compactness having a rather simple proof is presented. As a consequence, a short proof of a result [R1] stating that a torsion-free group $B$ in a prebalanced and TEP exact sequence $0 \to K \to C \to B \to 0$ is a $B_2$-group provided $K$ and $C$ are so.
Classification : 20K20, 20K27
Keywords: $B_1$-group; $B_2$-group; prebalanced subgroup; torsion extension property; decent subgroup; axiom-3 family
@article{CMUC_1996__37_1_a11,
     author = {Bican, Ladislav},
     title = {Butler groups and {Shelah's} {Singular} {Compactness}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {171--178},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1996},
     mrnumber = {1396169},
     zbl = {0857.20037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a11/}
}
TY  - JOUR
AU  - Bican, Ladislav
TI  - Butler groups and Shelah's Singular Compactness
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1996
SP  - 171
EP  - 178
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a11/
LA  - en
ID  - CMUC_1996__37_1_a11
ER  - 
%0 Journal Article
%A Bican, Ladislav
%T Butler groups and Shelah's Singular Compactness
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 171-178
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a11/
%G en
%F CMUC_1996__37_1_a11
Bican, Ladislav. Butler groups and Shelah's Singular Compactness. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 171-178. http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a11/