Forcing countable networks for spaces satisfying $\operatorname{R}(X^\omega)=\omega$
Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 159-170
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that all finite powers of a Hausdorff space $X$ do not contain uncountable weakly separated subspaces iff there is a c.c.c poset $P$ such that in $V^P$ $\,X$ is a countable union of $0$-dimensional subspaces of countable weight. We also show that this theorem is sharp in two different senses: (i) we cannot get rid of using generic extensions, (ii) we have to consider all finite powers of $X$.
Classification :
03E35, 54A25, 54A35
Keywords: net weight; weakly separated; Martin's Axiom; forcing
Keywords: net weight; weakly separated; Martin's Axiom; forcing
@article{CMUC_1996__37_1_a10,
author = {Juh\'asz, I. and Soukup, L. and Szentmikl\'ossy, Z.},
title = {Forcing countable networks for spaces satisfying $\operatorname{R}(X^\omega)=\omega$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {159--170},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {1996},
mrnumber = {1396168},
zbl = {0862.54003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a10/}
}
TY - JOUR
AU - Juhász, I.
AU - Soukup, L.
AU - Szentmiklóssy, Z.
TI - Forcing countable networks for spaces satisfying $\operatorname{R}(X^\omega)=\omega$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
SP - 159
EP - 170
VL - 37
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a10/
LA - en
ID - CMUC_1996__37_1_a10
ER -
%0 Journal Article
%A Juhász, I.
%A Soukup, L.
%A Szentmiklóssy, Z.
%T Forcing countable networks for spaces satisfying $\operatorname{R}(X^\omega)=\omega$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1996
%P 159-170
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a10/
%G en
%F CMUC_1996__37_1_a10
Juhász, I.; Soukup, L.; Szentmiklóssy, Z. Forcing countable networks for spaces satisfying $\operatorname{R}(X^\omega)=\omega$. Commentationes Mathematicae Universitatis Carolinae, Tome 37 (1996) no. 1, pp. 159-170. http://geodesic.mathdoc.fr/item/CMUC_1996__37_1_a10/