Minimal generators for aperiodic endomorphisms
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 721-725.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Every aperiodic endomorphism $f$ of a nonatomic Lebesgue space which possesses a finite 1-sided generator has a 1-sided generator $\beta $ such that $k_f\leq \operatorname{card}\, \beta \leq k_f+1$. This is the best estimate for the minimal cardinality of a 1-sided generator. The above result is the generalization of the analogous one for ergodic case.
Classification : 28D05
Keywords: aperiodic endomorphism; 1-sided generator
@article{CMUC_1995__36_4_a9,
     author = {Kowalski, Zbigniew S.},
     title = {Minimal generators for aperiodic endomorphisms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {721--725},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {1995},
     mrnumber = {1378693},
     zbl = {0840.28006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a9/}
}
TY  - JOUR
AU  - Kowalski, Zbigniew S.
TI  - Minimal generators for aperiodic endomorphisms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 721
EP  - 725
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a9/
LA  - en
ID  - CMUC_1995__36_4_a9
ER  - 
%0 Journal Article
%A Kowalski, Zbigniew S.
%T Minimal generators for aperiodic endomorphisms
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 721-725
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a9/
%G en
%F CMUC_1995__36_4_a9
Kowalski, Zbigniew S. Minimal generators for aperiodic endomorphisms. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 721-725. http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a9/