Minimal generators for aperiodic endomorphisms
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 721-725
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Every aperiodic endomorphism $f$ of a nonatomic Lebesgue space which possesses a finite 1-sided generator has a 1-sided generator $\beta $ such that $k_f\leq \operatorname{card}\, \beta \leq k_f+1$. This is the best estimate for the minimal cardinality of a 1-sided generator. The above result is the generalization of the analogous one for ergodic case.
@article{CMUC_1995__36_4_a9,
author = {Kowalski, Zbigniew S.},
title = {Minimal generators for aperiodic endomorphisms},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {721--725},
publisher = {mathdoc},
volume = {36},
number = {4},
year = {1995},
mrnumber = {1378693},
zbl = {0840.28006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a9/}
}
Kowalski, Zbigniew S. Minimal generators for aperiodic endomorphisms. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 721-725. http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a9/