Applications of the spectral radius to some integral equations
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 695-703.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper [13] we proved a fixed point theorem for an operator $\Cal A$, which satisfies a generalized Lipschitz condition with respect to a linear bounded operator $A$, that is: $$ m(\Cal A x-\Cal A y)\prec Am(x-y). $$ The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator $A$.
Classification : 34K10, 45G10, 47G10, 47H07, 47H10, 47J10
Keywords: fixed point theorem; spectral radius; integral-functional equation
@article{CMUC_1995__36_4_a6,
     author = {Zima, Miros{\l}awa},
     title = {Applications of the spectral radius to some integral equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {695--703},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {1995},
     mrnumber = {1378690},
     zbl = {0845.47047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a6/}
}
TY  - JOUR
AU  - Zima, Mirosława
TI  - Applications of the spectral radius to some integral equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 695
EP  - 703
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a6/
LA  - en
ID  - CMUC_1995__36_4_a6
ER  - 
%0 Journal Article
%A Zima, Mirosława
%T Applications of the spectral radius to some integral equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 695-703
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a6/
%G en
%F CMUC_1995__36_4_a6
Zima, Mirosława. Applications of the spectral radius to some integral equations. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 695-703. http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a6/