On the sequence of integer parts of a good sequence for the ergodic theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 737-743.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $(u_n)$ is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts $([u_n])$ good for the ergodic theorem\,? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.
Classification : 28D10, 40A30, 60F25
Keywords: ergodic theorem along subsequences; Banach principle
@article{CMUC_1995__36_4_a11,
     author = {Lesigne, Emmanuel},
     title = {On the sequence of integer parts of a good sequence for the ergodic theorem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {737--743},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {1995},
     mrnumber = {1378695},
     zbl = {0868.28010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a11/}
}
TY  - JOUR
AU  - Lesigne, Emmanuel
TI  - On the sequence of integer parts of a good sequence for the ergodic theorem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 737
EP  - 743
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a11/
LA  - en
ID  - CMUC_1995__36_4_a11
ER  - 
%0 Journal Article
%A Lesigne, Emmanuel
%T On the sequence of integer parts of a good sequence for the ergodic theorem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 737-743
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a11/
%G en
%F CMUC_1995__36_4_a11
Lesigne, Emmanuel. On the sequence of integer parts of a good sequence for the ergodic theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 737-743. http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a11/