An existence theorem of positive solutions to a singular nonlinear boundary value problem
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 609-614.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note we consider the boundary value problem $y''=f(x,y,y')$ $\,(x\in [0,X];X>0)$, $y(0)=0$, $y(X)=a>0$; where $f$ is a real function which may be singular at $y=0$. We prove an existence theorem of positive solutions to the previous problem, under different hypotheses of Theorem 2 of L.E. Bobisud [J. Math. Anal. Appl. 173 (1993), 69–83], that extends and improves Theorem 3.2 of D. O'Regan [J. Differential Equations 84 (1990), 228–251].
Classification : 34B15
Keywords: ordinary differential equations; singular boundary value problem; positive solutions
@article{CMUC_1995__36_4_a0,
     author = {Bonanno, Gabriele},
     title = {An existence theorem of positive solutions to a singular nonlinear boundary value problem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {609--614},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {1995},
     mrnumber = {1378684},
     zbl = {0847.34020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a0/}
}
TY  - JOUR
AU  - Bonanno, Gabriele
TI  - An existence theorem of positive solutions to a singular nonlinear boundary value problem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 609
EP  - 614
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a0/
LA  - en
ID  - CMUC_1995__36_4_a0
ER  - 
%0 Journal Article
%A Bonanno, Gabriele
%T An existence theorem of positive solutions to a singular nonlinear boundary value problem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 609-614
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a0/
%G en
%F CMUC_1995__36_4_a0
Bonanno, Gabriele. An existence theorem of positive solutions to a singular nonlinear boundary value problem. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 4, pp. 609-614. http://geodesic.mathdoc.fr/item/CMUC_1995__36_4_a0/