An inequality for the coefficients of a cosine polynomial
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 427-428
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove: If $$ \frac 12+\sum_{k=1}^{n}a_k(n)\cos (kx)\geq 0 \text{ for all } x\in [0,2\pi ), $$ then $$ 1-a_k(n)\geq \frac 12 \frac{k^2}{n^2} \text{ for } k=1,\dots ,n. $$ The constant $1/2$ is the best possible.
@article{CMUC_1995__36_3_a2,
author = {Alzer, Horst},
title = {An inequality for the coefficients of a cosine polynomial},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {427--428},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {1995},
mrnumber = {1364482},
zbl = {0833.26012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a2/}
}
Alzer, Horst. An inequality for the coefficients of a cosine polynomial. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 427-428. http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a2/