Which topological spaces have a weak reflection in compact spaces?
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 529-536
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The problem, whether every topological space has a weak compact reflection, was answered by M. Hu\v sek in the negative. Assuming normality, M. Hu\v sek fully characterized the spaces having a weak reflection in compact spaces as the spaces with the finite Wallman remainder. In this paper we prove that the assumption of normality may be omitted. On the other hand, we show that some covering properties kill the weak reflectivity of a noncompact topological space in compact spaces.
Classification :
54C20, 54D20, 54D35
Keywords: weak reflection; Wallman compactification; filter (base); net; $\theta$-regul\-arity, weak $\left[\omega_1, \infty\right)^r$-refinability
Keywords: weak reflection; Wallman compactification; filter (base); net; $\theta$-regul\-arity, weak $\left[\omega_1, \infty\right)^r$-refinability
@article{CMUC_1995__36_3_a14,
author = {Kov\'ar, Martin Maria},
title = {Which topological spaces have a weak reflection in compact spaces?},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {529--536},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {1995},
mrnumber = {1364494},
zbl = {0860.54024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a14/}
}
TY - JOUR AU - Kovár, Martin Maria TI - Which topological spaces have a weak reflection in compact spaces? JO - Commentationes Mathematicae Universitatis Carolinae PY - 1995 SP - 529 EP - 536 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a14/ LA - en ID - CMUC_1995__36_3_a14 ER -
Kovár, Martin Maria. Which topological spaces have a weak reflection in compact spaces?. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 529-536. http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a14/