Which topological spaces have a weak reflection in compact spaces?
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 529-536.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The problem, whether every topological space has a weak compact reflection, was answered by M. Hu\v sek in the negative. Assuming normality, M. Hu\v sek fully characterized the spaces having a weak reflection in compact spaces as the spaces with the finite Wallman remainder. In this paper we prove that the assumption of normality may be omitted. On the other hand, we show that some covering properties kill the weak reflectivity of a noncompact topological space in compact spaces.
Classification : 54C20, 54D20, 54D35
Keywords: weak reflection; Wallman compactification; filter (base); net; $\theta$-regul\-arity, weak $\left[\omega_1, \infty\right)^r$-refinability
@article{CMUC_1995__36_3_a14,
     author = {Kov\'ar, Martin Maria},
     title = {Which topological spaces have a weak reflection in compact spaces?},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {529--536},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1995},
     mrnumber = {1364494},
     zbl = {0860.54024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a14/}
}
TY  - JOUR
AU  - Kovár, Martin Maria
TI  - Which topological spaces have a weak reflection in compact spaces?
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 529
EP  - 536
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a14/
LA  - en
ID  - CMUC_1995__36_3_a14
ER  - 
%0 Journal Article
%A Kovár, Martin Maria
%T Which topological spaces have a weak reflection in compact spaces?
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 529-536
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a14/
%G en
%F CMUC_1995__36_3_a14
Kovár, Martin Maria. Which topological spaces have a weak reflection in compact spaces?. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 529-536. http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a14/