Eigenvalues of the $p$-Laplacian in ${\boldkey R}^N$ with indefinite weight
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 519-527
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the nonlinear eigenvalue problem $$ -\operatorname{div}(|{\nabla} u|^{p-2}{\nabla} u)=\lambda g(x)|u|^{p-2}u $$ in $\boldkey R^N$ with $p>1$. A condition on indefinite weight function $g$ is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in ${W^{1, p}(\boldkey R^N)}$. A nonexistence result is also given for the case $p\geq N$.
Classification :
35J65, 35J70, 35P30, 58E05
Keywords: eigenvalue; the $p$-Laplacian; indefinite weight; $\boldkey R^N$
Keywords: eigenvalue; the $p$-Laplacian; indefinite weight; $\boldkey R^N$
@article{CMUC_1995__36_3_a13,
author = {Huang, Yin Xi},
title = {Eigenvalues of the $p${-Laplacian} in ${\boldkey R}^N$ with indefinite weight},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {519--527},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {1995},
mrnumber = {1364493},
zbl = {0839.35097},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a13/}
}
TY - JOUR
AU - Huang, Yin Xi
TI - Eigenvalues of the $p$-Laplacian in ${\boldkey R}^N$ with indefinite weight
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
SP - 519
EP - 527
VL - 36
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a13/
LA - en
ID - CMUC_1995__36_3_a13
ER -
Huang, Yin Xi. Eigenvalues of the $p$-Laplacian in ${\boldkey R}^N$ with indefinite weight. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 3, pp. 519-527. http://geodesic.mathdoc.fr/item/CMUC_1995__36_3_a13/