On Fréchet differentiability of convex functions on Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 249-253.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Equivalent conditions for the separability of the range of the subdifferential of a given convex Lipschitz function $f$ defined on a separable Banach space are studied. The conditions are in terms of a majorization of $f$ by a $C^1$-smooth function, separability of the boundary for $f$ or an approximation of $f$ by Fréchet smooth convex functions.
Classification : 46B03, 46G05, 49J50, 58C20
Keywords: Fréchet differentiability; convex functions; variational principles; Asplund spaces
@article{CMUC_1995__36_2_a4,
     author = {Tang, Wee-Kee},
     title = {On {Fr\'echet} differentiability of convex functions on {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {249--253},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1995},
     mrnumber = {1357526},
     zbl = {0831.46045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a4/}
}
TY  - JOUR
AU  - Tang, Wee-Kee
TI  - On Fréchet differentiability of convex functions on Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 249
EP  - 253
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a4/
LA  - en
ID  - CMUC_1995__36_2_a4
ER  - 
%0 Journal Article
%A Tang, Wee-Kee
%T On Fréchet differentiability of convex functions on Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 249-253
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a4/
%G en
%F CMUC_1995__36_2_a4
Tang, Wee-Kee. On Fréchet differentiability of convex functions on Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 249-253. http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a4/