On Fréchet differentiability of convex functions on Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 249-253
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Equivalent conditions for the separability of the range of the subdifferential of a given convex Lipschitz function $f$ defined on a separable Banach space are studied. The conditions are in terms of a majorization of $f$ by a $C^1$-smooth function, separability of the boundary for $f$ or an approximation of $f$ by Fréchet smooth convex functions.
Classification :
46B03, 46G05, 49J50, 58C20
Keywords: Fréchet differentiability; convex functions; variational principles; Asplund spaces
Keywords: Fréchet differentiability; convex functions; variational principles; Asplund spaces
@article{CMUC_1995__36_2_a4,
author = {Tang, Wee-Kee},
title = {On {Fr\'echet} differentiability of convex functions on {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {249--253},
publisher = {mathdoc},
volume = {36},
number = {2},
year = {1995},
mrnumber = {1357526},
zbl = {0831.46045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a4/}
}
TY - JOUR AU - Tang, Wee-Kee TI - On Fréchet differentiability of convex functions on Banach spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1995 SP - 249 EP - 253 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a4/ LA - en ID - CMUC_1995__36_2_a4 ER -
Tang, Wee-Kee. On Fréchet differentiability of convex functions on Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 249-253. http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a4/