Linear transforms supporting circular convolution over a commutative ring with identity
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 395-400
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a commutative ring $\operatorname R$ with identity and a positive integer $\operatorname N$. We characterize all the 3-tuples $(\operatorname L_1,\operatorname L_2,\operatorname L_3)$ of linear transforms over $\operatorname R^{\operatorname N}$, having the ``circular convolution'' pro\-perty, i.e\. such that $x\ast y=\operatorname L_3(\operatorname L_1 (x)\otimes \operatorname L_2 (y))$ for all $x,y \in \operatorname R^{\operatorname N}$.
@article{CMUC_1995__36_2_a16,
author = {Nessibi, M. M.},
title = {Linear transforms supporting circular convolution over a commutative ring with identity},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {395--400},
publisher = {mathdoc},
volume = {36},
number = {2},
year = {1995},
mrnumber = {1357538},
zbl = {0860.15003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a16/}
}
TY - JOUR AU - Nessibi, M. M. TI - Linear transforms supporting circular convolution over a commutative ring with identity JO - Commentationes Mathematicae Universitatis Carolinae PY - 1995 SP - 395 EP - 400 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a16/ LA - en ID - CMUC_1995__36_2_a16 ER -
%0 Journal Article %A Nessibi, M. M. %T Linear transforms supporting circular convolution over a commutative ring with identity %J Commentationes Mathematicae Universitatis Carolinae %D 1995 %P 395-400 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a16/ %G en %F CMUC_1995__36_2_a16
Nessibi, M. M. Linear transforms supporting circular convolution over a commutative ring with identity. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 395-400. http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a16/