Linear transforms supporting circular convolution over a commutative ring with identity
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 395-400.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a commutative ring $\operatorname R$ with identity and a positive integer $\operatorname N$. We characterize all the 3-tuples $(\operatorname L_1,\operatorname L_2,\operatorname L_3)$ of linear transforms over $\operatorname R^{\operatorname N}$, having the ``circular convolution'' pro\-perty, i.e\. such that $x\ast y=\operatorname L_3(\operatorname L_1 (x)\otimes \operatorname L_2 (y))$ for all $x,y \in \operatorname R^{\operatorname N}$.
Classification : 13B10, 15A04, 15A33, 65T50
Keywords: circular convolution property
@article{CMUC_1995__36_2_a16,
     author = {Nessibi, M. M.},
     title = {Linear transforms supporting circular convolution over a commutative ring with identity},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {395--400},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1995},
     mrnumber = {1357538},
     zbl = {0860.15003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a16/}
}
TY  - JOUR
AU  - Nessibi, M. M.
TI  - Linear transforms supporting circular convolution over a commutative ring with identity
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 395
EP  - 400
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a16/
LA  - en
ID  - CMUC_1995__36_2_a16
ER  - 
%0 Journal Article
%A Nessibi, M. M.
%T Linear transforms supporting circular convolution over a commutative ring with identity
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 395-400
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a16/
%G en
%F CMUC_1995__36_2_a16
Nessibi, M. M. Linear transforms supporting circular convolution over a commutative ring with identity. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 2, pp. 395-400. http://geodesic.mathdoc.fr/item/CMUC_1995__36_2_a16/