Coincidence points and maximal elements of multifunctions on convex spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 57-67.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.
Classification : 47H04, 47H10, 49A40, 49J27, 49J40, 54C60, 54H25, 55M20
Keywords: convex space; polytope; multifunction (map); upper semicontinuous (u.s.c.); lower semicontinuous (l.s.c.); compact map; acyclic; Kakutani map; acyclic map; admissible class; almost $p$-affine; almost $p$-quasiconvex; maximal element
@article{CMUC_1995__36_1_a8,
     author = {Park, Sehie},
     title = {Coincidence points and maximal elements of multifunctions on convex spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1995},
     mrnumber = {1334414},
     zbl = {0829.47050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a8/}
}
TY  - JOUR
AU  - Park, Sehie
TI  - Coincidence points and maximal elements of multifunctions on convex spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 57
EP  - 67
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a8/
LA  - en
ID  - CMUC_1995__36_1_a8
ER  - 
%0 Journal Article
%A Park, Sehie
%T Coincidence points and maximal elements of multifunctions on convex spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 57-67
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a8/
%G en
%F CMUC_1995__36_1_a8
Park, Sehie. Coincidence points and maximal elements of multifunctions on convex spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a8/