Coincidence points and maximal elements of multifunctions on convex spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 57-67
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.
Classification :
47H04, 47H10, 49A40, 49J27, 49J40, 54C60, 54H25, 55M20
Keywords: convex space; polytope; multifunction (map); upper semicontinuous (u.s.c.); lower semicontinuous (l.s.c.); compact map; acyclic; Kakutani map; acyclic map; admissible class; almost $p$-affine; almost $p$-quasiconvex; maximal element
Keywords: convex space; polytope; multifunction (map); upper semicontinuous (u.s.c.); lower semicontinuous (l.s.c.); compact map; acyclic; Kakutani map; acyclic map; admissible class; almost $p$-affine; almost $p$-quasiconvex; maximal element
@article{CMUC_1995__36_1_a8,
author = {Park, Sehie},
title = {Coincidence points and maximal elements of multifunctions on convex spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {57--67},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {1995},
mrnumber = {1334414},
zbl = {0829.47050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a8/}
}
TY - JOUR AU - Park, Sehie TI - Coincidence points and maximal elements of multifunctions on convex spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1995 SP - 57 EP - 67 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a8/ LA - en ID - CMUC_1995__36_1_a8 ER -
Park, Sehie. Coincidence points and maximal elements of multifunctions on convex spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a8/