A note on existence and uniqueness of solutions of neutral functional-differential equations with state-dependent delays
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 15-17.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Existence and uniqueness theorem for state-dependent delay-differential equations of neutral type is given. This theorem generalizes previous results by Grimm and the author.
Classification : 34A10, 34K05, 34K40
Keywords: functional-differential equation; existence and uniqueness of solutions
@article{CMUC_1995__36_1_a3,
     author = {Jackiewicz, Zdzislaw},
     title = {A note on existence and uniqueness of solutions of neutral functional-differential equations with state-dependent delays},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {15--17},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1995},
     mrnumber = {1334409},
     zbl = {0920.34064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a3/}
}
TY  - JOUR
AU  - Jackiewicz, Zdzislaw
TI  - A note on existence and uniqueness of solutions of neutral functional-differential equations with state-dependent delays
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 15
EP  - 17
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a3/
LA  - en
ID  - CMUC_1995__36_1_a3
ER  - 
%0 Journal Article
%A Jackiewicz, Zdzislaw
%T A note on existence and uniqueness of solutions of neutral functional-differential equations with state-dependent delays
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 15-17
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a3/
%G en
%F CMUC_1995__36_1_a3
Jackiewicz, Zdzislaw. A note on existence and uniqueness of solutions of neutral functional-differential equations with state-dependent delays. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 15-17. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a3/