A note on group algebras of $p$-primary abelian groups
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 11-14
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Suppose $p$ is a prime number and $R$ is a commutative ring with unity of characteristic 0 in which $p$ is not a unit. Assume that $G$ and $H$ are $p$-primary abelian groups such that the respective group algebras $RG$ and $RH$ are $R$-isomorphic. Under certain restrictions on the ideal structure of $R$, it is shown that $G$ and $H$ are isomorphic.
@article{CMUC_1995__36_1_a2,
author = {Ullery, William},
title = {A note on group algebras of $p$-primary abelian groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {11--14},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {1995},
mrnumber = {1334408},
zbl = {0828.20005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a2/}
}
Ullery, William. A note on group algebras of $p$-primary abelian groups. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 11-14. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a2/