An approach to covering dimensions
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 149-169
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Using certain ideas connected with the entropy theory, several kinds of dimensions are introduced for arbitrary topological spaces. Their properties are examined, in particular, for normal spaces and quasi-discrete ones. One of the considered dimensions coincides, on these spaces, with the Čech-Lebesgue dimension and the height dimension of posets, respectively.
Classification :
06A06, 06A10, 54F05, 54F45
Keywords: Čech-Lebesgue dimension; height dimension of posets; dyadic expansion; rigged finite open covers; partition dimension
Keywords: Čech-Lebesgue dimension; height dimension of posets; dyadic expansion; rigged finite open covers; partition dimension
@article{CMUC_1995__36_1_a17,
author = {Kat\v{e}tov, Miroslav},
title = {An approach to covering dimensions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {149--169},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {1995},
mrnumber = {1334423},
zbl = {0834.54019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a17/}
}
Katětov, Miroslav. An approach to covering dimensions. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 149-169. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a17/