Whitney blocks in the hyperspace of a finite graph
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 137-147
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $X$ be a finite graph. Let $C(X)$ be the hyperspace of all nonempty subcontinua of $X$ and let $\mu :C(X)\rightarrow \Bbb R$ be a Whitney map. We prove that there exist numbers $0$ such that if $T\in (T_{i-1},T_i)$, then the Whitney block $\mu ^{-1} (T_{i-1},T_i)$ is homeomorphic to the product $\mu ^{-1}(T)\times (T_{i-1},T_i)$. We also show that there exists only a finite number of topologically different Whitney levels for $C(X)$.
Classification :
05C10, 52B99, 54B20
Keywords: hyperspaces; Whitney levels; Whitney blocks; finite graphs
Keywords: hyperspaces; Whitney levels; Whitney blocks; finite graphs
@article{CMUC_1995__36_1_a16,
author = {Illanes, Alejandro},
title = {Whitney blocks in the hyperspace of a finite graph},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {137--147},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {1995},
mrnumber = {1334422},
zbl = {0833.54009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a16/}
}
Illanes, Alejandro. Whitney blocks in the hyperspace of a finite graph. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 137-147. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a16/