Whitney blocks in the hyperspace of a finite graph
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 137-147.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a finite graph. Let $C(X)$ be the hyperspace of all nonempty subcontinua of $X$ and let $\mu :C(X)\rightarrow \Bbb R$ be a Whitney map. We prove that there exist numbers $0$ such that if $T\in (T_{i-1},T_i)$, then the Whitney block $\mu ^{-1} (T_{i-1},T_i)$ is homeomorphic to the product $\mu ^{-1}(T)\times (T_{i-1},T_i)$. We also show that there exists only a finite number of topologically different Whitney levels for $C(X)$.
Classification : 05C10, 52B99, 54B20
Keywords: hyperspaces; Whitney levels; Whitney blocks; finite graphs
@article{CMUC_1995__36_1_a16,
     author = {Illanes, Alejandro},
     title = {Whitney blocks in the hyperspace of a finite graph},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {137--147},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1995},
     mrnumber = {1334422},
     zbl = {0833.54009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a16/}
}
TY  - JOUR
AU  - Illanes, Alejandro
TI  - Whitney blocks in the hyperspace of a finite graph
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 137
EP  - 147
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a16/
LA  - en
ID  - CMUC_1995__36_1_a16
ER  - 
%0 Journal Article
%A Illanes, Alejandro
%T Whitney blocks in the hyperspace of a finite graph
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 137-147
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a16/
%G en
%F CMUC_1995__36_1_a16
Illanes, Alejandro. Whitney blocks in the hyperspace of a finite graph. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 137-147. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a16/