A generalization of Magill's Theorem for non-locally compact spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 127-136
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the theory of compactifications, Magill's theorem that the continuous image of a remainder of a space is again a remainder is one of the most important theorems in the field. It is somewhat unfortunate that the theorem holds only in locally compact spaces. In fact, if all continuous images of a remainder are again remainders, then the space must be locally compact. This paper is a modification of Magill's result to more general spaces. This of course requires restrictions on the nature of the function.
@article{CMUC_1995__36_1_a15,
author = {Faulkner, Gary D. and Vipera, M. Cristina},
title = {A generalization of {Magill's} {Theorem} for non-locally compact spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {127--136},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {1995},
mrnumber = {1334421},
zbl = {0861.54022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a15/}
}
TY - JOUR AU - Faulkner, Gary D. AU - Vipera, M. Cristina TI - A generalization of Magill's Theorem for non-locally compact spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1995 SP - 127 EP - 136 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a15/ LA - en ID - CMUC_1995__36_1_a15 ER -
%0 Journal Article %A Faulkner, Gary D. %A Vipera, M. Cristina %T A generalization of Magill's Theorem for non-locally compact spaces %J Commentationes Mathematicae Universitatis Carolinae %D 1995 %P 127-136 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a15/ %G en %F CMUC_1995__36_1_a15
Faulkner, Gary D.; Vipera, M. Cristina. A generalization of Magill's Theorem for non-locally compact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 127-136. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a15/