$\omega^\omega$-directedness and a question of E. Michael
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 115-121.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We define $\omega ^{\omega }$-directedness, investigate various properties to determine whether they have this property or not, and use our results to obtain easier proofs of theorems due to Laurence and Alster concerning the existence of a Michael space, i.e\. a Lindelöf space whose product with the irrationals is not Lindelöf.
Classification : 03E35, 54A35, 54G20
Keywords: Michael space; Lindelöf
@article{CMUC_1995__36_1_a13,
     author = {Daniels, Peg},
     title = {$\omega^\omega$-directedness and a question of {E.} {Michael}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {115--121},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1995},
     mrnumber = {1334419},
     zbl = {0866.54007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a13/}
}
TY  - JOUR
AU  - Daniels, Peg
TI  - $\omega^\omega$-directedness and a question of E. Michael
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 115
EP  - 121
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a13/
LA  - en
ID  - CMUC_1995__36_1_a13
ER  - 
%0 Journal Article
%A Daniels, Peg
%T $\omega^\omega$-directedness and a question of E. Michael
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 115-121
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a13/
%G en
%F CMUC_1995__36_1_a13
Daniels, Peg. $\omega^\omega$-directedness and a question of E. Michael. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 115-121. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a13/