$\omega^\omega$-directedness and a question of E. Michael
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 115-121
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We define $\omega ^{\omega }$-directedness, investigate various properties to determine whether they have this property or not, and use our results to obtain easier proofs of theorems due to Laurence and Alster concerning the existence of a Michael space, i.e\. a Lindelöf space whose product with the irrationals is not Lindelöf.
@article{CMUC_1995__36_1_a13,
author = {Daniels, Peg},
title = {$\omega^\omega$-directedness and a question of {E.} {Michael}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {115--121},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {1995},
mrnumber = {1334419},
zbl = {0866.54007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a13/}
}
Daniels, Peg. $\omega^\omega$-directedness and a question of E. Michael. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 115-121. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a13/