Closed mapping theorems on $k$-spaces with point-countable $k$-networks
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 77-87
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove some closed mapping theorems on $k$-spaces with point-countable $k$-networks. One of them generalizes La\v snev's theorem. We also construct an example of a Hausdorff space $Ur$ with a countable base that admits a closed map onto metric space which is not compact-covering. Another our result says that a $k$-space $X$ with a point-countable $k$-network admitting a closed surjection which is not compact-covering contains a closed copy of $Ur$.
Classification :
54A20, 54B10, 54C10
Keywords: $k$-space; $k$-network; closed map; compact-covering map
Keywords: $k$-space; $k$-network; closed map; compact-covering map
@article{CMUC_1995__36_1_a10,
author = {Shibakov, A.},
title = {Closed mapping theorems on $k$-spaces with point-countable $k$-networks},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {77--87},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {1995},
mrnumber = {1334416},
zbl = {0832.54011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a10/}
}
TY - JOUR AU - Shibakov, A. TI - Closed mapping theorems on $k$-spaces with point-countable $k$-networks JO - Commentationes Mathematicae Universitatis Carolinae PY - 1995 SP - 77 EP - 87 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a10/ LA - en ID - CMUC_1995__36_1_a10 ER -
Shibakov, A. Closed mapping theorems on $k$-spaces with point-countable $k$-networks. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 77-87. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a10/