Closed mapping theorems on $k$-spaces with point-countable $k$-networks
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 77-87.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove some closed mapping theorems on $k$-spaces with point-countable $k$-networks. One of them generalizes La\v snev's theorem. We also construct an example of a Hausdorff space $Ur$ with a countable base that admits a closed map onto metric space which is not compact-covering. Another our result says that a $k$-space $X$ with a point-countable $k$-network admitting a closed surjection which is not compact-covering contains a closed copy of $Ur$.
Classification : 54A20, 54B10, 54C10
Keywords: $k$-space; $k$-network; closed map; compact-covering map
@article{CMUC_1995__36_1_a10,
     author = {Shibakov, A.},
     title = {Closed mapping theorems on $k$-spaces with point-countable $k$-networks},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {77--87},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {1995},
     mrnumber = {1334416},
     zbl = {0832.54011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a10/}
}
TY  - JOUR
AU  - Shibakov, A.
TI  - Closed mapping theorems on $k$-spaces with point-countable $k$-networks
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1995
SP  - 77
EP  - 87
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a10/
LA  - en
ID  - CMUC_1995__36_1_a10
ER  - 
%0 Journal Article
%A Shibakov, A.
%T Closed mapping theorems on $k$-spaces with point-countable $k$-networks
%J Commentationes Mathematicae Universitatis Carolinae
%D 1995
%P 77-87
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a10/
%G en
%F CMUC_1995__36_1_a10
Shibakov, A. Closed mapping theorems on $k$-spaces with point-countable $k$-networks. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 77-87. http://geodesic.mathdoc.fr/item/CMUC_1995__36_1_a10/