On the approximation of entire functions over Carathéodory domains
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 681-689.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $D$ be a Carathéodory domain. For $1\leq p\leq \infty $, let $L^p(D)$ be the class of all functions $f$ holomorphic in $D$ such that $\|f\|_{D,p}=[\frac{1}{A}\int\int_{D}^{}|f(z)|^p\,dx\,dy]^{1/p}\infty $, where $A$ is the area of $D$. For $f\in L^p(D)$, set $$ E_n^p(f)=\inf _{t\in \pi _n} \|f-t\|_{D,p}\,; $$ $\pi _n$ consists of all polynomials of degree at most $n$. In this paper we study the growth of an entire function in terms of approximation error in $L^p$-norm on $D$.
Classification : 30D15, 30E10
Keywords: approximation error; generalized parameters; $L^p$ norm and Fourier coefficients
@article{CMUC_1994__35_4_a8,
     author = {Kumar, D. and Kasana, H. S.},
     title = {On the approximation of entire functions over {Carath\'eodory} domains},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {681--689},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {1994},
     mrnumber = {1321238},
     zbl = {0815.30019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a8/}
}
TY  - JOUR
AU  - Kumar, D.
AU  - Kasana, H. S.
TI  - On the approximation of entire functions over Carathéodory domains
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 681
EP  - 689
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a8/
LA  - en
ID  - CMUC_1994__35_4_a8
ER  - 
%0 Journal Article
%A Kumar, D.
%A Kasana, H. S.
%T On the approximation of entire functions over Carathéodory domains
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 681-689
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a8/
%G en
%F CMUC_1994__35_4_a8
Kumar, D.; Kasana, H. S. On the approximation of entire functions over Carathéodory domains. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 681-689. http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a8/