On the approximation of entire functions over Carathéodory domains
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 681-689
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $D$ be a Carathéodory domain. For $1\leq p\leq \infty $, let $L^p(D)$ be the class of all functions $f$ holomorphic in $D$ such that $\|f\|_{D,p}=[\frac{1}{A}\int\int_{D}^{}|f(z)|^p\,dx\,dy]^{1/p}\infty $, where $A$ is the area of $D$. For $f\in L^p(D)$, set $$ E_n^p(f)=\inf _{t\in \pi _n} \|f-t\|_{D,p}\,; $$ $\pi _n$ consists of all polynomials of degree at most $n$. In this paper we study the growth of an entire function in terms of approximation error in $L^p$-norm on $D$.
Classification :
30D15, 30E10
Keywords: approximation error; generalized parameters; $L^p$ norm and Fourier coefficients
Keywords: approximation error; generalized parameters; $L^p$ norm and Fourier coefficients
@article{CMUC_1994__35_4_a8,
author = {Kumar, D. and Kasana, H. S.},
title = {On the approximation of entire functions over {Carath\'eodory} domains},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {681--689},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {1994},
mrnumber = {1321238},
zbl = {0815.30019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a8/}
}
TY - JOUR AU - Kumar, D. AU - Kasana, H. S. TI - On the approximation of entire functions over Carathéodory domains JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 681 EP - 689 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a8/ LA - en ID - CMUC_1994__35_4_a8 ER -
Kumar, D.; Kasana, H. S. On the approximation of entire functions over Carathéodory domains. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 681-689. http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a8/