Analytic functions are $\Cal I$-density continuous
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 645-652.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A real function is $\Cal I$-density continuous if it is continuous with the $\Cal I$-density topology on both the domain and the range. If $f$ is analytic, then $f$ is $\Cal I$-density continuous. There exists a function which is both $C^\infty $ and convex which is not $\Cal I$-density continuous.
Classification : 26A21, 26E05, 26E10
Keywords: analytic function; $\Cal I$-density continuous; $\Cal I$-density topology
@article{CMUC_1994__35_4_a5,
     author = {Ciesielski, Krzysztof and Larson, Lee},
     title = {Analytic functions are $\Cal I$-density continuous},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {645--652},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {1994},
     mrnumber = {1321235},
     zbl = {0826.26011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a5/}
}
TY  - JOUR
AU  - Ciesielski, Krzysztof
AU  - Larson, Lee
TI  - Analytic functions are $\Cal I$-density continuous
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 645
EP  - 652
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a5/
LA  - en
ID  - CMUC_1994__35_4_a5
ER  - 
%0 Journal Article
%A Ciesielski, Krzysztof
%A Larson, Lee
%T Analytic functions are $\Cal I$-density continuous
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 645-652
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a5/
%G en
%F CMUC_1994__35_4_a5
Ciesielski, Krzysztof; Larson, Lee. Analytic functions are $\Cal I$-density continuous. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 645-652. http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a5/