Analytic functions are $\Cal I$-density continuous
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 645-652
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A real function is $\Cal I$-density continuous if it is continuous with the $\Cal I$-density topology on both the domain and the range. If $f$ is analytic, then $f$ is $\Cal I$-density continuous. There exists a function which is both $C^\infty $ and convex which is not $\Cal I$-density continuous.
Classification :
26A21, 26E05, 26E10
Keywords: analytic function; $\Cal I$-density continuous; $\Cal I$-density topology
Keywords: analytic function; $\Cal I$-density continuous; $\Cal I$-density topology
@article{CMUC_1994__35_4_a5,
author = {Ciesielski, Krzysztof and Larson, Lee},
title = {Analytic functions are $\Cal I$-density continuous},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {645--652},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {1994},
mrnumber = {1321235},
zbl = {0826.26011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a5/}
}
TY - JOUR AU - Ciesielski, Krzysztof AU - Larson, Lee TI - Analytic functions are $\Cal I$-density continuous JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 645 EP - 652 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a5/ LA - en ID - CMUC_1994__35_4_a5 ER -
Ciesielski, Krzysztof; Larson, Lee. Analytic functions are $\Cal I$-density continuous. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 645-652. http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a5/