Systems of nonlinear delay integral equations modelling population growth in a periodic environment
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 633-644
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study the existence and uniqueness of positive and periodic solutions of nonlinear delay integral systems of the type $$ x(t) = \int_{t-\tau _1}^t f(s,x(s),y(s))\,ds $$ $$ y(t) = \int_{t-\tau _2}^t g(s,x(s),y(s))\,ds $$ which model population growth in a periodic environment when there is an interaction between two species. For the proofs, we develop an adequate method of sub-supersolutions which provides, in some cases, an iterative scheme converging to the solution.
Classification :
34K15, 45G10, 45G15, 45M15, 45M20, 92D25
Keywords: nonlinear integral equations; monotone methods; population dynamics; positive solutions
Keywords: nonlinear integral equations; monotone methods; population dynamics; positive solutions
@article{CMUC_1994__35_4_a4,
author = {Ca\~nada, A. and Zertiti, A.},
title = {Systems of nonlinear delay integral equations modelling population growth in a periodic environment},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {633--644},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {1994},
mrnumber = {1321234},
zbl = {0816.45002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a4/}
}
TY - JOUR AU - Cañada, A. AU - Zertiti, A. TI - Systems of nonlinear delay integral equations modelling population growth in a periodic environment JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 633 EP - 644 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a4/ LA - en ID - CMUC_1994__35_4_a4 ER -
%0 Journal Article %A Cañada, A. %A Zertiti, A. %T Systems of nonlinear delay integral equations modelling population growth in a periodic environment %J Commentationes Mathematicae Universitatis Carolinae %D 1994 %P 633-644 %V 35 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a4/ %G en %F CMUC_1994__35_4_a4
Cañada, A.; Zertiti, A. Systems of nonlinear delay integral equations modelling population growth in a periodic environment. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 633-644. http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a4/