A property of $B_2$-groups
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 627-631
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is shown, under ZFC, that a $B_2$-group has the interesting property of being $\aleph _0$-prebalanced in every torsion-free abelian group in which it is a pure subgroup. As a consequence, we obtain alternate proofs of some well-known theorems on $B_2$-groups.
Classification :
20K20, 20K25, 20K27
Keywords: torsion-free abelian groups; Butler groups; $B_2$-groups; $\aleph _0$-prebalanced subgroups; completely decomposable groups; separative subgroups
Keywords: torsion-free abelian groups; Butler groups; $B_2$-groups; $\aleph _0$-prebalanced subgroups; completely decomposable groups; separative subgroups
@article{CMUC_1994__35_4_a3,
author = {Rangaswamy, K. M.},
title = {A property of $B_2$-groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {627--631},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {1994},
mrnumber = {1321233},
zbl = {0823.20058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a3/}
}
Rangaswamy, K. M. A property of $B_2$-groups. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 627-631. http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a3/