A property of $B_2$-groups
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 627-631.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown, under ZFC, that a $B_2$-group has the interesting property of being $\aleph _0$-prebalanced in every torsion-free abelian group in which it is a pure subgroup. As a consequence, we obtain alternate proofs of some well-known theorems on $B_2$-groups.
Classification : 20K20, 20K25, 20K27
Keywords: torsion-free abelian groups; Butler groups; $B_2$-groups; $\aleph _0$-prebalanced subgroups; completely decomposable groups; separative subgroups
@article{CMUC_1994__35_4_a3,
     author = {Rangaswamy, K. M.},
     title = {A property of $B_2$-groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {627--631},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {1994},
     mrnumber = {1321233},
     zbl = {0823.20058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a3/}
}
TY  - JOUR
AU  - Rangaswamy, K. M.
TI  - A property of $B_2$-groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 627
EP  - 631
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a3/
LA  - en
ID  - CMUC_1994__35_4_a3
ER  - 
%0 Journal Article
%A Rangaswamy, K. M.
%T A property of $B_2$-groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 627-631
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a3/
%G en
%F CMUC_1994__35_4_a3
Rangaswamy, K. M. A property of $B_2$-groups. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 627-631. http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a3/