A metrizable completely regular ordered space
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 773-778.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We construct a completely regular ordered space $(X,{\Cal T},\leq)$ such that $X$ is an $I$-space, the topology $\Cal T$ of $X$ is metrizable and the bitopological space $(X,{\Cal T}^\sharp,{\Cal T}^{\flat})$ is pairwise regular, but not pairwise completely regular. (Here ${\Cal T}^\sharp$ denotes the upper topology and ${\Cal T}^\flat$ the lower topology of $X$.)
Classification : 06F30, 54E15, 54E55, 54F05
Keywords: completely regular ordered; strictly completely regular ordered; pairwise completely regular; pairwise regular; $I$-space
@article{CMUC_1994__35_4_a17,
     author = {K\"unzi, Hans-Peter A. and Watson, Stephen},
     title = {A metrizable completely regular ordered space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {773--778},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {1994},
     mrnumber = {1321247},
     zbl = {0812.54038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a17/}
}
TY  - JOUR
AU  - Künzi, Hans-Peter A.
AU  - Watson, Stephen
TI  - A metrizable completely regular ordered space
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 773
EP  - 778
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a17/
LA  - en
ID  - CMUC_1994__35_4_a17
ER  - 
%0 Journal Article
%A Künzi, Hans-Peter A.
%A Watson, Stephen
%T A metrizable completely regular ordered space
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 773-778
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a17/
%G en
%F CMUC_1994__35_4_a17
Künzi, Hans-Peter A.; Watson, Stephen. A metrizable completely regular ordered space. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 773-778. http://geodesic.mathdoc.fr/item/CMUC_1994__35_4_a17/