Large cardinals and Dowker products
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 3, pp. 515-522
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove that if there is a model of set-theory which contains no first countable, locally compact, scattered, countably paracompact space $X$, whose Tychonoff square is a Dowker space, then there is an inner model which contains a measurable cardinal.
Classification :
03E35, 03E55, 54D15, 54D20, 54G15
Keywords: small Dowker space; Dowker product; normality; countable paracompactness; measurable cardinal; Covering Lemma
Keywords: small Dowker space; Dowker product; normality; countable paracompactness; measurable cardinal; Covering Lemma
@article{CMUC_1994__35_3_a7,
author = {Good, Chris},
title = {Large cardinals and {Dowker} products},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {515--522},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {1994},
mrnumber = {1307277},
zbl = {0816.03022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_3_a7/}
}
Good, Chris. Large cardinals and Dowker products. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 3, pp. 515-522. http://geodesic.mathdoc.fr/item/CMUC_1994__35_3_a7/