Sets of determination for parabolic functions on a half-space
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 3, pp. 497-513
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We characterize all subsets $M$ of $\Bbb R^n \times \Bbb R^+$ such that $$ \sup\limits_{X\in \Bbb R^n \times \Bbb R^+}u(X) = \sup\limits_{X\in M}u(X) $$ for every bounded parabolic function $u$ on $\Bbb R^n \times \Bbb R^+$. The closely related problem of representing functions as sums of Weierstrass kernels corresponding to points of $M$ is also considered. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References. As a by-product the question of representability of probability continuous distributions as sums of multiples of normal distributions is investigated.
Classification :
31B10, 35C15, 35K05, 35K15, 60E99
Keywords: heat equation; parabolic function; Weierstrass kernel; set of determination; decomposition of $L_1(\Bbb R^n)$; normal distribution
Keywords: heat equation; parabolic function; Weierstrass kernel; set of determination; decomposition of $L_1(\Bbb R^n)$; normal distribution
@article{CMUC_1994__35_3_a6,
author = {Rano\v{s}ov\'a, Jarmila},
title = {Sets of determination for parabolic functions on a half-space},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {497--513},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {1994},
mrnumber = {1307276},
zbl = {0808.35043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_3_a6/}
}
TY - JOUR AU - Ranošová, Jarmila TI - Sets of determination for parabolic functions on a half-space JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 497 EP - 513 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1994__35_3_a6/ LA - en ID - CMUC_1994__35_3_a6 ER -
Ranošová, Jarmila. Sets of determination for parabolic functions on a half-space. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 3, pp. 497-513. http://geodesic.mathdoc.fr/item/CMUC_1994__35_3_a6/