Boundary value problems for higher order ordinary differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 3, pp. 451-466.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f : [a,b] \times \Bbb R^{n+1} \rightarrow \Bbb R$ be a Carath'{e}odory's function. Let $ \{t_{h}\} $, with $t_{h} \in [a,b]$, and $\{x_{h}\}$ be two real sequences. In this paper, the family of boundary value problems $$ \cases x^{(k)} = f \left( t,x,x',\ldots ,x^{(n)} \right) \ x^{(i)}(t_{i}) = x_{i} \,, \quad i=0,1, \ldots , k-1 \endcases \qquad (k=n+1,n+2,n+3,\ldots ) $$ is considered. It is proved that these boundary value problems admit at least a solution for each $k \geq \nu$, where $\nu \geq n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\{t_{h}\}$, are pointed out. Similar results are also proved for the Picard problem.
Classification : 34A12, 34B10, 34B15
Keywords: higher order ordinary differential equations; Nicoletti problem; Picard \newline problem
@article{CMUC_1994__35_3_a3,
     author = {Majorana, Armando and Marano, Salvatore A.},
     title = {Boundary value problems for higher order ordinary differential equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {451--466},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1994},
     mrnumber = {1307273},
     zbl = {0809.34034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_3_a3/}
}
TY  - JOUR
AU  - Majorana, Armando
AU  - Marano, Salvatore A.
TI  - Boundary value problems for higher order ordinary differential equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 451
EP  - 466
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_3_a3/
LA  - en
ID  - CMUC_1994__35_3_a3
ER  - 
%0 Journal Article
%A Majorana, Armando
%A Marano, Salvatore A.
%T Boundary value problems for higher order ordinary differential equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 451-466
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_3_a3/
%G en
%F CMUC_1994__35_3_a3
Majorana, Armando; Marano, Salvatore A. Boundary value problems for higher order ordinary differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 3, pp. 451-466. http://geodesic.mathdoc.fr/item/CMUC_1994__35_3_a3/