The area formula for $W^{1,n}$-mappings
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 291-298.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f$ be a mapping in the Sobolev space $W^{1,n}(\Omega,\bold R^n)$. Then the change of variables, or area formula holds for $f$ provided removing from counting into the multiplicity function the set where $f$ is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero.
Classification : 26B15, 26B20, 28A75, 30C65, 46E35
Keywords: Sobolev spaces; change of variables; area formula; Hölder continuity
@article{CMUC_1994__35_2_a9,
     author = {Mal\'y, Jan},
     title = {The area formula for $W^{1,n}$-mappings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {291--298},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1994},
     mrnumber = {1286576},
     zbl = {0812.30006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a9/}
}
TY  - JOUR
AU  - Malý, Jan
TI  - The area formula for $W^{1,n}$-mappings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 291
EP  - 298
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a9/
LA  - en
ID  - CMUC_1994__35_2_a9
ER  - 
%0 Journal Article
%A Malý, Jan
%T The area formula for $W^{1,n}$-mappings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 291-298
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a9/
%G en
%F CMUC_1994__35_2_a9
Malý, Jan. The area formula for $W^{1,n}$-mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 291-298. http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a9/