Note on special arithmetic and geometric means
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 409-412
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove: If $A(n)$ and $G(n)$ denote the arithmetic and geometric means of the first $n$ positive integers, then the sequence $n\mapsto nA(n)/G(n)-(n-1)A(n-1)/G(n-1)$ $(n\geq 2)$ is strictly increasing and converges to $e/2$, as $n$ tends to $\infty $.
Classification :
26A99, 26D15, 26D99, 40A05
Keywords: arithmetic and geometric means; discrete inequality
Keywords: arithmetic and geometric means; discrete inequality
@article{CMUC_1994__35_2_a21,
author = {Alzer, Horst},
title = {Note on special arithmetic and geometric means},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {409--412},
publisher = {mathdoc},
volume = {35},
number = {2},
year = {1994},
mrnumber = {1286588},
zbl = {0806.26015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a21/}
}
Alzer, Horst. Note on special arithmetic and geometric means. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 409-412. http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a21/