Note on special arithmetic and geometric means
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 409-412.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove: If $A(n)$ and $G(n)$ denote the arithmetic and geometric means of the first $n$ positive integers, then the sequence $n\mapsto nA(n)/G(n)-(n-1)A(n-1)/G(n-1)$ $(n\geq 2)$ is strictly increasing and converges to $e/2$, as $n$ tends to $\infty $.
Classification : 26A99, 26D15, 26D99, 40A05
Keywords: arithmetic and geometric means; discrete inequality
@article{CMUC_1994__35_2_a21,
     author = {Alzer, Horst},
     title = {Note on special arithmetic and geometric means},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {409--412},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1994},
     mrnumber = {1286588},
     zbl = {0806.26015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a21/}
}
TY  - JOUR
AU  - Alzer, Horst
TI  - Note on special arithmetic and geometric means
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 409
EP  - 412
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a21/
LA  - en
ID  - CMUC_1994__35_2_a21
ER  - 
%0 Journal Article
%A Alzer, Horst
%T Note on special arithmetic and geometric means
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 409-412
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a21/
%G en
%F CMUC_1994__35_2_a21
Alzer, Horst. Note on special arithmetic and geometric means. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 409-412. http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a21/