Cardinal invariants and compactifications
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 403-408.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that every compact space $X$ is a Čech-Stone compactification of a normal subspace of cardinality at most $d(X)^{t(X)}$, and some facts about cardinal invariants of compact spaces.
Classification : 54A25, 54D35
Keywords: Čech-Stone compactification; cardinal invariants
@article{CMUC_1994__35_2_a20,
     author = {Gryzlov, A.},
     title = {Cardinal invariants and compactifications},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {403--408},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1994},
     mrnumber = {1286587},
     zbl = {0807.54005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a20/}
}
TY  - JOUR
AU  - Gryzlov, A.
TI  - Cardinal invariants and compactifications
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 403
EP  - 408
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a20/
LA  - en
ID  - CMUC_1994__35_2_a20
ER  - 
%0 Journal Article
%A Gryzlov, A.
%T Cardinal invariants and compactifications
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 403-408
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a20/
%G en
%F CMUC_1994__35_2_a20
Gryzlov, A. Cardinal invariants and compactifications. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 403-408. http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a20/