On powers of Lindelöf spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 383-401.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We present a forcing construction of a Hausdorff zero-dimensional Lindelöf space $X$ whose square $X^2$ is again Lindelöf but its cube $X^3$ has a closed discrete subspace of size ${\frak c}^+$, hence the Lindelöf degree $L(X^3) = {\frak c}^+ $. In our model the Continuum Hypothesis holds true. After that we give a description of a forcing notion to get a space $X$ such that $L(X^n) = \aleph_0$ for all positive integers $n$, but $L(X^{\aleph_0}) = {\frak c}^+ = \aleph_2$.
Classification : 03E35, 54A35, 54B10, 54D20
Keywords: forcing; topology; products; Lindelöf
@article{CMUC_1994__35_2_a19,
     author = {Gorelic, Isaac},
     title = {On powers of {Lindel\"of} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {383--401},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1994},
     mrnumber = {1286586},
     zbl = {0815.54015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a19/}
}
TY  - JOUR
AU  - Gorelic, Isaac
TI  - On powers of Lindelöf spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 383
EP  - 401
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a19/
LA  - en
ID  - CMUC_1994__35_2_a19
ER  - 
%0 Journal Article
%A Gorelic, Isaac
%T On powers of Lindelöf spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 383-401
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a19/
%G en
%F CMUC_1994__35_2_a19
Gorelic, Isaac. On powers of Lindelöf spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 383-401. http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a19/