On function spaces of Corson-compact spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 347-356.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We apply elementary substructures to characterize the space $C_p(X)$ for Corson-compact spaces. As a result, we prove that a compact space $X$ is Corson-compact, if $C_p(X)$ can be represented as a continuous image of a closed subspace of $(L_{\tau })^{\omega }\times Z$, where $Z$ is compact and $L_{\tau }$ denotes the canonical Lindelöf space of cardinality $\tau $ with one non-isolated point. This answers a question of Archangelskij [2].
Classification : 54C35, 54D30
Keywords: function spaces; Corson-compact spaces; elementary substructures
@article{CMUC_1994__35_2_a14,
     author = {Bandlow, Ingo},
     title = {On function spaces of {Corson-compact} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {347--356},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1994},
     mrnumber = {1286581},
     zbl = {0835.54016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a14/}
}
TY  - JOUR
AU  - Bandlow, Ingo
TI  - On function spaces of Corson-compact spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 347
EP  - 356
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a14/
LA  - en
ID  - CMUC_1994__35_2_a14
ER  - 
%0 Journal Article
%A Bandlow, Ingo
%T On function spaces of Corson-compact spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 347-356
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a14/
%G en
%F CMUC_1994__35_2_a14
Bandlow, Ingo. On function spaces of Corson-compact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 347-356. http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a14/