Ergodic properties of contraction semigroups in $L_p$, $1$
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 337-346
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\{T(t):t>0\}$ be a strongly continuous semigroup of linear contractions in $L_p$, $1$, of a $\sigma $-finite measure space. In this paper we prove that if there corresponds to each $t>0$ a positive linear contraction $P(t)$ in $L_p$ such that $|T(t)f|\leq P(t)|f|$ for all $f\in L_p$, then there exists a strongly continuous semigroup $\{S(t):t>0\}$ of positive linear contractions in $L_p$ such that $|T(t)f|\leq S(t)|f|$ for all $t>0$ and $f\in L_p$. Using this and Akcoglu's dominated ergodic theorem for positive linear contractions in $L_p$, we also prove multiparameter pointwise ergodic and local ergodic theorems for such semigroups.
Classification :
47A35, 47B38, 47D03, 47D06
Keywords: contraction semigroup; semigroup modulus; majorant; pointwise ergodic \newline theorem; pointwise local ergodic theorem
Keywords: contraction semigroup; semigroup modulus; majorant; pointwise ergodic \newline theorem; pointwise local ergodic theorem
@article{CMUC_1994__35_2_a13,
author = {Sato, Ryotaro},
title = {Ergodic properties of contraction semigroups in $L_p$, $1<p<\infty$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {337--346},
publisher = {mathdoc},
volume = {35},
number = {2},
year = {1994},
mrnumber = {1286580},
zbl = {0814.47010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a13/}
}
TY - JOUR AU - Sato, Ryotaro TI - Ergodic properties of contraction semigroups in $L_p$, $1 JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 337 EP - 346 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a13/ LA - en ID - CMUC_1994__35_2_a13 ER -
Sato, Ryotaro. Ergodic properties of contraction semigroups in $L_p$, $1