How subadditive are subadditive capacities?
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 311-324
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Subadditivity of capacities is defined initially on the compact sets and need not extend to all sets. This paper explores to what extent subadditivity holds. It presents some incidental results that are valid for all subadditive capacities. The main result states that for all hull-additive capacities (a class that contains the strongly subadditive capacities) there is countable subadditivity on a class at least as large as the universally measurable sets (so larger than the analytic sets).
Classification :
28A05, 28A12, 28C15
Keywords: capacities; subadditive capacities; sup measures; hull-additive capacities; vague and narrow topologies; lattice of capacities
Keywords: capacities; subadditive capacities; sup measures; hull-additive capacities; vague and narrow topologies; lattice of capacities
@article{CMUC_1994__35_2_a11,
author = {O'Brien, George L. and Vervaat, Wim},
title = {How subadditive are subadditive capacities?},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {311--324},
publisher = {mathdoc},
volume = {35},
number = {2},
year = {1994},
mrnumber = {1286578},
zbl = {0808.28001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a11/}
}
TY - JOUR AU - O'Brien, George L. AU - Vervaat, Wim TI - How subadditive are subadditive capacities? JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 311 EP - 324 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a11/ LA - en ID - CMUC_1994__35_2_a11 ER -
O'Brien, George L.; Vervaat, Wim. How subadditive are subadditive capacities?. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 311-324. http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a11/