On one class of solvable boundary value problems for ordinary differential equation of $n$-th order
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 299-309
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
New sufficient conditions of the existence and uniqueness of the solution of a boundary problem for an ordinary differential equation of $n$-th order with certain functional boundary conditions are constructed by the method of a priori estimates.
Classification :
34B10, 34B15
Keywords: boundary problem with functional conditions; differential equations of $n$-th order; method of a priori estimates; differential inequalities
Keywords: boundary problem with functional conditions; differential equations of $n$-th order; method of a priori estimates; differential inequalities
@article{CMUC_1994__35_2_a10,
author = {Tuan, Nguyen Anh},
title = {On one class of solvable boundary value problems for ordinary differential equation of $n$-th order},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {299--309},
publisher = {mathdoc},
volume = {35},
number = {2},
year = {1994},
mrnumber = {1286577},
zbl = {0841.34020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a10/}
}
TY - JOUR AU - Tuan, Nguyen Anh TI - On one class of solvable boundary value problems for ordinary differential equation of $n$-th order JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 299 EP - 309 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a10/ LA - en ID - CMUC_1994__35_2_a10 ER -
%0 Journal Article %A Tuan, Nguyen Anh %T On one class of solvable boundary value problems for ordinary differential equation of $n$-th order %J Commentationes Mathematicae Universitatis Carolinae %D 1994 %P 299-309 %V 35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a10/ %G en %F CMUC_1994__35_2_a10
Tuan, Nguyen Anh. On one class of solvable boundary value problems for ordinary differential equation of $n$-th order. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 299-309. http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a10/