On Cohen-Macaulay rings
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 223-230.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we use a characterization of $R$-modules $N$ such that $fd_RN = pd_RN$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting $N$ to be the $dth$ local cohomology functor of $R$ with respect to the maximal ideal where $d$ is the Krull dimension of $R$.
Classification : 13C14, 13D02, 13D05, 13D45, 13H10, 18G10, 18G20
Keywords: injective; precovers; preenvelopes; canonical module; Cohen-Macaulay; \newline $n$-Gorenstein; resolvent; resolutions
@article{CMUC_1994__35_2_a1,
     author = {Enochs, Edgar E. and Overtoun, Jenda M. G.},
     title = {On {Cohen-Macaulay} rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {223--230},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1994},
     mrnumber = {1286568},
     zbl = {0816.13008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a1/}
}
TY  - JOUR
AU  - Enochs, Edgar E.
AU  - Overtoun, Jenda M. G.
TI  - On Cohen-Macaulay rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 223
EP  - 230
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a1/
LA  - en
ID  - CMUC_1994__35_2_a1
ER  - 
%0 Journal Article
%A Enochs, Edgar E.
%A Overtoun, Jenda M. G.
%T On Cohen-Macaulay rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 223-230
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a1/
%G en
%F CMUC_1994__35_2_a1
Enochs, Edgar E.; Overtoun, Jenda M. G. On Cohen-Macaulay rings. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 223-230. http://geodesic.mathdoc.fr/item/CMUC_1994__35_2_a1/