On the conditional intensity of a random measure
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 1, pp. 103-109
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove the existence of the conditional intensity of a random measure that is absolutely continuous with respect to its mean; when there exists an L$^{p}$-intensity, $p>1$, the conditional intensity is obtained at the same time almost surely and in the mean.
Classification :
60G44, 60G55, 60G57
Keywords: random measure; point process; conditional intensity; absolute continuity; martingales
Keywords: random measure; point process; conditional intensity; absolute continuity; martingales
@article{CMUC_1994__35_1_a10,
author = {Jacob, Pierre and Oliveira, Paulo Eduardo},
title = {On the conditional intensity of a random measure},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {103--109},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {1994},
mrnumber = {1292587},
zbl = {0795.60034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_1_a10/}
}
TY - JOUR AU - Jacob, Pierre AU - Oliveira, Paulo Eduardo TI - On the conditional intensity of a random measure JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 103 EP - 109 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1994__35_1_a10/ LA - en ID - CMUC_1994__35_1_a10 ER -
Jacob, Pierre; Oliveira, Paulo Eduardo. On the conditional intensity of a random measure. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 1, pp. 103-109. http://geodesic.mathdoc.fr/item/CMUC_1994__35_1_a10/