On tempered convolution operators
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

\font\psaci=rsfs10 \font\ppsaci=rsfs7 In this paper we show that if $S$ is a convolution operator in $\text{\ppsaci S}^{\,\, \prime }$, and $S\ast \text{\ppsaci S}^{\,\, \prime }=\text{\ppsaci S}^{\,\, \prime }$, then the zeros of the Fourier transform of $S$ are of bounded order. Then we discuss relations between the topologies of the space $\text{\psaci O}_c^{\, \prime }$ of convolution operators on $\text{\ppsaci S}^{\,\, \prime }$. Finally, we give sufficient conditions for convergence in the space of convolution operators in $\text{\ppsaci S}^{\,\, \prime }$ and in its dual.
Classification : 46F05, 46F10, 46F12
Keywords: tempered distribution; convolution operator; Fourier transform; convergence of sequences
@article{CMUC_1994__35_1_a0,
     author = {Abdullah, Saleh},
     title = {On tempered convolution operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1994},
     mrnumber = {1292577},
     zbl = {0807.46036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1994__35_1_a0/}
}
TY  - JOUR
AU  - Abdullah, Saleh
TI  - On tempered convolution operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
SP  - 1
EP  - 7
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1994__35_1_a0/
LA  - en
ID  - CMUC_1994__35_1_a0
ER  - 
%0 Journal Article
%A Abdullah, Saleh
%T On tempered convolution operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 1994
%P 1-7
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1994__35_1_a0/
%G en
%F CMUC_1994__35_1_a0
Abdullah, Saleh. On tempered convolution operators. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/CMUC_1994__35_1_a0/