A note on linear mappings between function spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 4, pp. 711-715
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Arhangel'ski\v{\i} proved that if $X$ and $Y$ are completely regular spaces such that ${C_p (X)}$ and ${C_p (Y)}$ are linearly homeomorphic, then $X$ is pseudocompact if and only if $Y$ is pseudocompact. In addition he proved the same result for compactness, $\sigma $-compactness and realcompactness. In this paper we prove that if $\phi : {C_p (X)} \rightarrow {C_p (X)}$ is a continuous linear surjection, then $Y$ is pseudocompact provided $X$ is and if $\phi $ is a continuous linear injection, then $X$ is pseudocompact provided $Y$ is. We also give examples that both statements do not hold for compactness, $\sigma $-compactness and realcompactness.
@article{CMUC_1993__34_4_a9,
author = {Baars, Jan},
title = {A note on linear mappings between function spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {711--715},
publisher = {mathdoc},
volume = {34},
number = {4},
year = {1993},
mrnumber = {1263800},
zbl = {0787.54017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_4_a9/}
}
Baars, Jan. A note on linear mappings between function spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 4, pp. 711-715. http://geodesic.mathdoc.fr/item/CMUC_1993__34_4_a9/