On total curvature of immersions and minimal submanifolds of spheres
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 459-463.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For closed immersed submanifolds of Euclidean spaces, we prove that $\int |\mu |^2\, dV\geq V/R^2$, where $\mu $ is the mean curvature field, $V$ the volume of the given submanifold and $R$ is the radius of the smallest sphere enclosing the submanifold. Moreover, we prove that the equality holds only for minimal submanifolds of this sphere.
Classification : 53A05, 53C40, 53C42, 53C45, 58E12
Keywords: closed submanifold; total mean curvature; minimal submanifold
@article{CMUC_1993__34_3_a8,
     author = {Rotondaro, Giovanni},
     title = {On total curvature of immersions and minimal submanifolds of spheres},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {459--463},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1993},
     mrnumber = {1243078},
     zbl = {0787.53049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a8/}
}
TY  - JOUR
AU  - Rotondaro, Giovanni
TI  - On total curvature of immersions and minimal submanifolds of spheres
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 459
EP  - 463
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a8/
LA  - en
ID  - CMUC_1993__34_3_a8
ER  - 
%0 Journal Article
%A Rotondaro, Giovanni
%T On total curvature of immersions and minimal submanifolds of spheres
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 459-463
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a8/
%G en
%F CMUC_1993__34_3_a8
Rotondaro, Giovanni. On total curvature of immersions and minimal submanifolds of spheres. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 459-463. http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a8/