The distance between subdifferentials in the terms of functions
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 419-424.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For convex continuous functions $f,g$ defined respectively in neighborhoods of points $x,y$ in a normed linear space, a formula for the distance between $\partial f(x)$ and $\partial g(y)$ in terms of $f,g$ (i.e\. without using the dual) is proved. Some corollaries, like a new characterization of the subdifferential of a continuous convex function at a point, are given. This, together with a theorem from [4], implies a sufficient condition for a family of continuous convex functions on a barrelled normed linear space to be locally uniformly Lipschitz.
Classification : 26B25, 46A08, 46N10, 49J52, 52A41
Keywords: convex analysis; subdifferentials of convex functions; barrelled normed linear spaces
@article{CMUC_1993__34_3_a3,
     author = {Vesel\'y, Libor},
     title = {The distance between subdifferentials in the terms of functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {419--424},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1993},
     mrnumber = {1243073},
     zbl = {0809.49016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a3/}
}
TY  - JOUR
AU  - Veselý, Libor
TI  - The distance between subdifferentials in the terms of functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 419
EP  - 424
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a3/
LA  - en
ID  - CMUC_1993__34_3_a3
ER  - 
%0 Journal Article
%A Veselý, Libor
%T The distance between subdifferentials in the terms of functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 419-424
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a3/
%G en
%F CMUC_1993__34_3_a3
Veselý, Libor. The distance between subdifferentials in the terms of functions. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 419-424. http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a3/