Some conditions under which a uniform space is fine
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 543-547.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a uniform space of uniform weight $\mu$. It is shown that if every open covering, of power at most $\mu$, is uniform, then $X$ is fine. Furthermore, an $\omega _\mu $-metric space is fine, provided that every finite open covering is uniform.
Classification : 54A25, 54A35, 54E15
Keywords: uniform space; uniform weight; fine uniformity; uniformly locally finite; $\omega _\mu $-additive space; $\omega _\mu $-metric space
@article{CMUC_1993__34_3_a16,
     author = {Marconi, Umberto},
     title = {Some conditions under which a uniform space is fine},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {543--547},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1993},
     mrnumber = {1243086},
     zbl = {0845.54017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a16/}
}
TY  - JOUR
AU  - Marconi, Umberto
TI  - Some conditions under which a uniform space is fine
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 543
EP  - 547
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a16/
LA  - en
ID  - CMUC_1993__34_3_a16
ER  - 
%0 Journal Article
%A Marconi, Umberto
%T Some conditions under which a uniform space is fine
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 543-547
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a16/
%G en
%F CMUC_1993__34_3_a16
Marconi, Umberto. Some conditions under which a uniform space is fine. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 543-547. http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a16/