On the $k$-Baire property
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 525-527
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this note we show the following theorem: ``Let $X$ be an almost $k$-discrete space, where $k$ is a regular cardinal. Then $X$ is $k^+$-Baire iff it is a $k$-Baire space and every point-$k$ open cover $\Cal U$ of $X$ such that $\operatorname{card}\, (\Cal U)\leq k$ is locally-$k$ at a dense set of points.'' For $k=\aleph _0$ we obtain a well-known characterization of Baire spaces. The case $k=\aleph _1$ is also discussed.
Classification :
54D20, 54E52, 54E65, 54G10, 54G99
Keywords: $k$-Baire; almost $k$-discrete; point-$k$; locally-$k$
Keywords: $k$-Baire; almost $k$-discrete; point-$k$; locally-$k$
@article{CMUC_1993__34_3_a13,
author = {Fedeli, Alessandro},
title = {On the $k${-Baire} property},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {525--527},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {1993},
mrnumber = {1243083},
zbl = {0784.54031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a13/}
}
Fedeli, Alessandro. On the $k$-Baire property. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 525-527. http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a13/