On the $k$-Baire property
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 525-527.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note we show the following theorem: ``Let $X$ be an almost $k$-discrete space, where $k$ is a regular cardinal. Then $X$ is $k^+$-Baire iff it is a $k$-Baire space and every point-$k$ open cover $\Cal U$ of $X$ such that $\operatorname{card}\, (\Cal U)\leq k$ is locally-$k$ at a dense set of points.'' For $k=\aleph _0$ we obtain a well-known characterization of Baire spaces. The case $k=\aleph _1$ is also discussed.
Classification : 54D20, 54E52, 54E65, 54G10, 54G99
Keywords: $k$-Baire; almost $k$-discrete; point-$k$; locally-$k$
@article{CMUC_1993__34_3_a13,
     author = {Fedeli, Alessandro},
     title = {On the $k${-Baire} property},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {525--527},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1993},
     mrnumber = {1243083},
     zbl = {0784.54031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a13/}
}
TY  - JOUR
AU  - Fedeli, Alessandro
TI  - On the $k$-Baire property
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 525
EP  - 527
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a13/
LA  - en
ID  - CMUC_1993__34_3_a13
ER  - 
%0 Journal Article
%A Fedeli, Alessandro
%T On the $k$-Baire property
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 525-527
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a13/
%G en
%F CMUC_1993__34_3_a13
Fedeli, Alessandro. On the $k$-Baire property. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 525-527. http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a13/