On the topological structure of compact 5-manifolds
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 513-524.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We classify the genus one compact (PL) 5-manifolds and prove some results about closed 5-manifolds with free fundamental group. In particular, let $M$ be a closed connected orientable smooth $5$-manifold with free fundamental group. Then we prove that the number of distinct smooth $5$-manifolds homotopy equivalent to $M$ equals the $2$-nd Betti number (mod $2$) of $M$.
Classification : 57N15, 57N65, 57Q25, 57R67
Keywords: colored graph; crystallization; genus; manifold; surgery; s-cobordism; normal invariants; homotopy type
@article{CMUC_1993__34_3_a12,
     author = {Cavicchioli, Alberto and Spaggiari, Fulvia},
     title = {On the topological structure of compact 5-manifolds},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {513--524},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1993},
     mrnumber = {1243082},
     zbl = {0784.57009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a12/}
}
TY  - JOUR
AU  - Cavicchioli, Alberto
AU  - Spaggiari, Fulvia
TI  - On the topological structure of compact 5-manifolds
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 513
EP  - 524
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a12/
LA  - en
ID  - CMUC_1993__34_3_a12
ER  - 
%0 Journal Article
%A Cavicchioli, Alberto
%A Spaggiari, Fulvia
%T On the topological structure of compact 5-manifolds
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 513-524
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a12/
%G en
%F CMUC_1993__34_3_a12
Cavicchioli, Alberto; Spaggiari, Fulvia. On the topological structure of compact 5-manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 513-524. http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a12/