On the topological structure of compact 5-manifolds
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 513-524
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We classify the genus one compact (PL) 5-manifolds and prove some results about closed 5-manifolds with free fundamental group. In particular, let $M$ be a closed connected orientable smooth $5$-manifold with free fundamental group. Then we prove that the number of distinct smooth $5$-manifolds homotopy equivalent to $M$ equals the $2$-nd Betti number (mod $2$) of $M$.
Classification :
57N15, 57N65, 57Q25, 57R67
Keywords: colored graph; crystallization; genus; manifold; surgery; s-cobordism; normal invariants; homotopy type
Keywords: colored graph; crystallization; genus; manifold; surgery; s-cobordism; normal invariants; homotopy type
@article{CMUC_1993__34_3_a12,
author = {Cavicchioli, Alberto and Spaggiari, Fulvia},
title = {On the topological structure of compact 5-manifolds},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {513--524},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {1993},
mrnumber = {1243082},
zbl = {0784.57009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a12/}
}
TY - JOUR AU - Cavicchioli, Alberto AU - Spaggiari, Fulvia TI - On the topological structure of compact 5-manifolds JO - Commentationes Mathematicae Universitatis Carolinae PY - 1993 SP - 513 EP - 524 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a12/ LA - en ID - CMUC_1993__34_3_a12 ER -
Cavicchioli, Alberto; Spaggiari, Fulvia. On the topological structure of compact 5-manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 513-524. http://geodesic.mathdoc.fr/item/CMUC_1993__34_3_a12/