Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{CMUC_1993__34_2_a9, author = {Wu, Congxin and Bu, Qingying}, title = {K\"othe dual of {Banach} sequence spaces $\ell_p[X]$ $(1\le p<\infty)$ and {Grothendieck} space}, journal = {Commentationes Mathematicae Universitatis Carolinae}, pages = {265--273}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {1993}, mrnumber = {1241736}, zbl = {0785.46009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a9/} }
TY - JOUR AU - Wu, Congxin AU - Bu, Qingying TI - Köthe dual of Banach sequence spaces $\ell_p[X]$ $(1\le p<\infty)$ and Grothendieck space JO - Commentationes Mathematicae Universitatis Carolinae PY - 1993 SP - 265 EP - 273 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a9/ LA - en ID - CMUC_1993__34_2_a9 ER -
%0 Journal Article %A Wu, Congxin %A Bu, Qingying %T Köthe dual of Banach sequence spaces $\ell_p[X]$ $(1\le p<\infty)$ and Grothendieck space %J Commentationes Mathematicae Universitatis Carolinae %D 1993 %P 265-273 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a9/ %G en %F CMUC_1993__34_2_a9
Wu, Congxin; Bu, Qingying. Köthe dual of Banach sequence spaces $\ell_p[X]$ $(1\le p<\infty)$ and Grothendieck space. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 265-273. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a9/