Non-commutative Gelfand-Naimark theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 253-255
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that if Y is the Hausdorffization of the primitive spectrum of a $C^{\ast }$-algebra $A$ then $A$ is $\ast $-isomorphic to the $C^{\ast }$-algebra of sections vanishing at infinity of the canonical $C^{\ast }$-bundle over $Y$.
Classification :
46L05, 46L85
Keywords: $C^{\ast }$-algebra; $C^{\ast }$-bundle; sectional representation
Keywords: $C^{\ast }$-algebra; $C^{\ast }$-bundle; sectional representation
@article{CMUC_1993__34_2_a7,
author = {Migda, Janusz},
title = {Non-commutative {Gelfand-Naimark} theorem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {253--255},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1993},
mrnumber = {1241734},
zbl = {0809.46057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a7/}
}
Migda, Janusz. Non-commutative Gelfand-Naimark theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 253-255. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a7/