Partitions of $k$-branching trees and the reaping number of Boolean algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 397-399
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The reaping number $\frak r_{m,n}({\Bbb B})$ of a Boolean algebra ${\Bbb B}$ is defined as the minimum size of a subset ${\Cal A} \subseteq {\Bbb B}\setminus \{{\bold O}\}$ such that for each $m$-partition $\Cal P$ of unity, some member of $\Cal A$ meets less than $n$ elements of $\Cal P$. We show that for each ${\Bbb B}$, $\frak r_{m,n}(\Bbb B) = \frak r_{\lceil \frac{m}{n-1} \rceil,2}(\Bbb B)$ as conjectured by Dow, Steprāns and Watson. The proof relies on a partition theorem for finite trees; namely that every $k$-branching tree whose maximal nodes are coloured with $\ell$ colours contains an $m$-branching subtree using at most $n$ colours if and only if $\lceil \frac{\ell}{n} \rceil \lceil \frac{k}{m-1} \rceil$.
Classification :
05C05, 05C15, 05C90, 06E05, 06E10
Keywords: Boolean algebra; reaping number; partition
Keywords: Boolean algebra; reaping number; partition
@article{CMUC_1993__34_2_a22,
author = {Laflamme, Claude},
title = {Partitions of $k$-branching trees and the reaping number of {Boolean} algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {397--399},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1993},
mrnumber = {1241749},
zbl = {0783.06009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a22/}
}
TY - JOUR AU - Laflamme, Claude TI - Partitions of $k$-branching trees and the reaping number of Boolean algebras JO - Commentationes Mathematicae Universitatis Carolinae PY - 1993 SP - 397 EP - 399 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a22/ LA - en ID - CMUC_1993__34_2_a22 ER -
Laflamme, Claude. Partitions of $k$-branching trees and the reaping number of Boolean algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 397-399. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a22/