Relatively realcompact sets and nearly pseudocompact spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 375-382.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A space is said to be nearly pseudocompact iff $vX-X$ is dense in $\beta X-X$. In this paper relatively realcompact sets are defined, and it is shown that a space is nearly pseudocompact iff every relatively realcompact open set is relatively compact. Other equivalences of nearly pseudocompactness are obtained and compared to some results of Blair and van Douwen.
Classification : 54C45, 54D30, 54D35, 54D45, 54D60, 54D99
Keywords: nearly pseudocompact; nearly realcompact; $G_\delta $-relatively realcompact; relatively realcompact; relatively pseudocompact; relatively compact; nowhere locally compact
@article{CMUC_1993__34_2_a20,
     author = {Schommer, John J.},
     title = {Relatively realcompact sets and nearly pseudocompact spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {375--382},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1993},
     mrnumber = {1241747},
     zbl = {0781.54019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a20/}
}
TY  - JOUR
AU  - Schommer, John J.
TI  - Relatively realcompact sets and nearly pseudocompact spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 375
EP  - 382
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a20/
LA  - en
ID  - CMUC_1993__34_2_a20
ER  - 
%0 Journal Article
%A Schommer, John J.
%T Relatively realcompact sets and nearly pseudocompact spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 375-382
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a20/
%G en
%F CMUC_1993__34_2_a20
Schommer, John J. Relatively realcompact sets and nearly pseudocompact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 375-382. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a20/