Semirings whose additive endomorphisms are multiplicative
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 213-219.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A ring or an idempotent semiring is associative provided that additive endomorphisms are multiplicative.
Classification : 16U70, 16W20, 16Y60, 17A60
Keywords: semiring; additive endomorphism
@article{CMUC_1993__34_2_a2,
     author = {Kepka, Tom\'a\v{s}},
     title = {Semirings whose additive endomorphisms are multiplicative},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {213--219},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1993},
     mrnumber = {1241729},
     zbl = {0787.16029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a2/}
}
TY  - JOUR
AU  - Kepka, Tomáš
TI  - Semirings whose additive endomorphisms are multiplicative
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1993
SP  - 213
EP  - 219
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a2/
LA  - en
ID  - CMUC_1993__34_2_a2
ER  - 
%0 Journal Article
%A Kepka, Tomáš
%T Semirings whose additive endomorphisms are multiplicative
%J Commentationes Mathematicae Universitatis Carolinae
%D 1993
%P 213-219
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a2/
%G en
%F CMUC_1993__34_2_a2
Kepka, Tomáš. Semirings whose additive endomorphisms are multiplicative. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 213-219. http://geodesic.mathdoc.fr/item/CMUC_1993__34_2_a2/